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Integer Programming (IP)

min𝑐𝑥

s.t. 𝐴𝑥 ≤ 𝑏

𝑥 𝜖 ℤ𝑛

𝑛 variables, 𝑚 constraints

Open Question: Is there a 2𝑂(𝑛) time algorithm?

First result: 2𝑂(𝑛
2) [Lenstra `83]

Best known complexity: 𝑛𝑂(𝑛) [Kannan `87]

𝐾

𝑐



𝜇 𝐾, ℤ𝑛 ≔ smallest scaling 𝑠 such that 
every shift 𝑠𝐾 + 𝑡 contains an integer point.

ℤ2
𝐾

Main Dichotomy

Either covering radius 𝜇 𝐾, ℤ𝑛 ≤ 1.
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𝜇 𝐾, ℤ𝑛 ≔ smallest scaling 𝑠 such that 
every shift 𝑠𝐾 + 𝑡 contains an integer point.

ℤ2

Main Dichotomy

Either covering radius 𝜇 𝐾, ℤ𝑛 ≤ 1.

2
3
𝐾𝜇 𝐾, ℤ2 = 2
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𝐾

ℤ2

Main Dichotomy

Either covering radius 𝜇 𝐾, ℤ𝑛 ≤ 1.

Can find integer point in

2𝑂(𝑛) time [D. 12]



ℤ2

Main Dichotomy

There exists rank 𝑘 ≥ 1 integer projection 𝑃 ∈ ℤ𝑛×𝑘

such vol𝑘 𝑃𝐾
1

𝑘 is small.

𝐾

Projection on 𝑦-axis

𝑃 = (0 1)

Or 𝐾 is “flat”:
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ℤ2

Main Dichotomy

There exists rank 𝑘 ≥ 1 integer projection 𝑃 ∈ ℤ𝑛×𝑘

such vol𝑘 𝑃𝐾
1

𝑘 is small.

𝐾

Recurse on ≈ volk PK

subproblems [D. 12]    

Or 𝐾 is “flat”:



Duality Relation

1 ≤ 𝜇 𝐾, ℤ𝑛 min
𝑃∈ℤ𝑘×𝑛

𝑟𝑘 𝑃 =𝑘≥1

vol𝑘 𝑃𝐾
1
𝑘 ≤ ?

“Easy” side “Hard” side

Either covering radius 𝜇(𝐾, ℤ𝑛) is small 
or 𝐾 is “flat”.



Khinchine Flatness Theorem

1 ≤ 𝜇 𝐾,ℤ𝑛 min
𝑃∈ℤ1×𝑛

𝑟𝑘 𝑃 =1

vol1(𝑃𝐾) ≤ ෩O(𝑛 Τ4 3)

𝐾

[Khinchine `48, Babai `86, Hastad `86, Lenstra-Lagarias-
Schnorr `87, Kannan-Lovasz `88, Banaszczyk `93-96, 
Banaszczyk-Litvak-Pajor-Szarek `99, Rudelson `00]



Kannan-Lovász Flatness Theorem

1 ≤ 𝜇 𝐾,ℤ𝑛 min
𝑃∈ℤ𝑘×𝑛

𝑟𝑘 𝑃 =𝑘≥1

vol𝑘 𝑃𝐾
1
𝑘 ≤ 𝑛

[Kannan `87, Kannan-Lovász `88]

𝐾



Kannan-Lovász (KL) Conjecture

1 ≤ 𝜇 𝐾, ℤ𝑛 min
𝑃∈ℤ𝑘×𝑛

𝑟𝑘 𝑃 =𝑘≥1

vol𝑘 𝑃𝐾
1
𝑘 ≤ 𝑂 log 𝑛 ‼

𝐾



Faster Algorithm for IP?

1 ≤ 𝜇 𝐾, ℤ𝑛 min
𝑃∈ℤ𝑘×𝑛

𝑟𝑘 𝑃 =𝑘≥1

vol𝑘 𝑃𝐾
1
𝑘 ≤ 𝑂 log 𝑛

D. `12:  Assuming KL conjecture 

+ 𝑃 computable in (log 𝑛)𝑂(𝑛) time

then there is log 𝑛 𝑂(𝑛) time algorithm for IP.



ℓ2 Kannan-Lovász Conjecture

Does the conjecture hold for ellipsoids?

ℤ𝑛

𝐸

0

An ellipsoid is 𝐸 = 𝑇𝐵2
𝑛



ℓ2 Kannan-Lovász Conjecture

Answer: YES* [Regev-S.Davidowitz 17]

ℤ𝑛

𝐸

0

* up to polylogarithmic factors



ℓ2 Kannan-Lovász Conjecture

Can we compute the projection P?

ℤ𝑛

𝐸

0

THIS TALK:  YES, in 2𝑂(𝑛) time. 
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𝑇𝐸 = 𝐵2
𝑛

0

Easier to think of Euclidean ball vs general lattice.

ℒ = 𝑇ℤ𝑛

ℓ2 Kannan-Lovász Conjecture



A lattice ℒ ⊆ ℝ𝑛 is 𝐵ℤ𝑛 for a 
basis 𝐵 = 𝑏1, … , 𝑏𝑛 . 

ℒ(𝐵) denotes the 
lattice generated by 𝐵.

Note: a lattice has many 
equivalent bases.

𝑏2

𝑏2
𝑏1

𝑏2

𝑏1

Lattices

ℒ



A lattice ℒ ⊆ ℝ𝑛 is 𝐵ℤ𝑛 for a 
basis 𝐵 = 𝑏1, … , 𝑏𝑛 . 

ℒ(𝐵) denotes the 
lattice generated by 𝐵.

The determinant of
ℒ is | det 𝐵 |. 

Lattices

𝑏1

𝑏2
ℒ



Lattices

𝑏1

𝑏2

A lattice ℒ ⊆ ℝ𝑛 is 𝐵ℤ𝑛 for a 
basis 𝐵 = 𝑏1, … , 𝑏𝑛 . 

ℒ(𝐵) denotes the 
lattice generated by 𝐵.

The determinant of
ℒ is | det 𝐵 |. 
Equal to volume of 
any tiling set. ℒ



ℓ2 Covering Radius

ℒ

𝜇

𝜇 ℒ ≔ 𝜇 𝐵2
𝑛, ℒ

Distance of farthest point to the lattice ℒ.

𝒱

Voronoi cell 𝒱 ≔ all points closer to 0



Volumetric Lower Bounds

ℒ

𝜇

vol𝑛 𝐵2
𝑛𝜇 ℒ ≥ voln 𝒱 = det(ℒ)

𝒱

Voronoi cell 𝒱 ≔ all points closer to 0



Volumetric Lower Bounds

ℒ

𝜇

𝜇(ℒ) ≥ voln 𝐵2
𝑛 −

1
𝑛 det ℒ

1
𝑛

𝒱

Voronoi cell 𝒱 ≔ all points closer to 0



Volumetric Lower Bounds

ℒ

𝜇

𝜇(ℒ) ≿ 𝑛 det ℒ
1
𝑛

𝒱

Voronoi cell 𝒱 ≔ all points closer to 0



Volumetric Lower Bounds

ℒ

𝜇

𝜇 ℒ ≥ 𝜇 ℒ↓𝑊

ℒ↓𝑊 projection onto 𝑊

𝑊
𝜇↓𝑊



Volumetric Lower Bounds

ℒ

𝜇

𝜇 ℒ ≥ 𝜇 ℒ↓𝑊 ≳ 𝑘 det ℒ↓𝑊
1
𝑘

ℒ↓𝑊 projection onto 𝑊
dim(𝑊) = 𝑘 ≥ 1

𝑊
𝜇↓𝑊



Volumetric Lower Bounds

ℒ

𝜇

𝜇 ℒ ≳ max
dim 𝑊 =𝑘≥1

𝑘 det ℒ↓𝑊
1
𝑘

ℒ↓𝑊 projection onto 𝑊
dim(𝑊) = 𝑘 ≥ 1

𝑊
𝜇↓𝑊



ℓ2 Kannan-Lovász Conjecture

Define 𝐶𝐾𝐿,2(𝑛) to be smallest number such that

𝜇 ℒ ≤ 𝐶𝐾𝐿,2(𝑛) max
dim 𝑊 =𝑘≥1

𝑘 det ℒ↓𝑊
1
𝑘

for all lattices of dimension at most 𝑛.

𝐶𝐾𝐿,2 𝑛 = Ω( log 𝑛)

Lower bound for ℒ with basis 𝑒1,
1

2
𝑒2, … ,

1

𝑛
𝑒𝑛.



KL Bounds

𝜇 ℒ ≤ 𝐶𝐾𝐿,2(𝑛) max
dim 𝑊 =𝑘≥1

𝑘 det ℒ↓𝑊
1
𝑘

Kannan-Lovász `88: 𝑛

D. Regev `16: log𝑂(1) 𝑛

Assuming Reverse Minkowski Conjecture.

Regev, S.Davidowitz `17: log Τ3 2 𝑛

Reverse Minkowski Conjecture is proved! 



Our Results

𝑛 dimensional lattice ℒ ≔ ℒ(𝐵)

1. Can compute subspace 𝑊, dim 𝑊 = 𝑘 ≥ 1

𝜇 ℒ ≤ 𝑂(log2.5 𝑛) 𝑘 det ℒ↓𝑊
1

𝑘

in 2𝑂(𝑛) time with high probability.

Prior work: 

Kannan Lovász `88: 𝑛 in 2𝑂(𝑛) time. 

D. Micciancio `13: best subspace in 𝑛𝑂(𝑛
2) time.



Our Results

𝑛 dimensional lattice ℒ ≔ ℒ(𝐵)

2. Can combine lower bounds over different 
subspaces to certify 𝜇 𝐿 up to the 
slicing constant  𝐿𝑛 for “stable” Voronoi cells*.

𝒱
* If voln 𝒱 = 1

can find hyperplane𝐻 s.t.
voln−1 𝒱 ∩ 𝐻 = Ω( 1

𝐿𝑛
)

𝐻



Our Results

𝑛 dimensional lattice ℒ ≔ ℒ(𝐵)

2. Can combine lower bounds over different 
subspaces to certify 𝜇 𝐿 up to the 
slicing constant  𝐿𝑛 for “stable” Voronoi cells*.

𝒱
Slicing Conjecture: 
𝐿𝑛 = 𝑂(1) for all convex bodies!
For “stable” Voronoi cells:
𝐿𝑛 = 𝑂(log 𝑛) [RS `17]

𝐻



Notation

𝑀 ⊆ ℒ sublattice of dimension 𝑘
Convention: 𝑀 = {0} then det 𝑀 ≔ 1.

Normalized Determinant:

nd 𝑀 ≔ det 𝑀 Τ1 𝑘

Projected Sublattice:
Τℒ 𝑀≔ℒ projected onto span 𝑀 ⊥



Lower Bounds for Chains

Theorem [D. 17]:
For 0 = ℒ0 ⊂ ℒ1 ⊂ ⋯ ⊂ ℒ𝑘 = ℒ then

𝜇 ℒ 2 ≿ σ𝑖=1
𝑘 dim( Τℒ𝑖 ℒ𝑖−1) nd Τℒ ℒ𝑖−1

2

Only “missing ingredient”:
Combined with techniques from [R.S. `17] easily get 
tightness within slicing constant 𝐿𝑛.



Lower Bounds for Chains

Theorem [D. 17]:
For 0 = ℒ0 ⊂ ℒ1 ⊂ ⋯ ⊂ ℒ𝑘 = ℒ then

𝜇 ℒ 2 ≿ σ𝑖=1
𝑘 dim( Τℒ𝑖 ℒ𝑖−1) nd Τℒ ℒ𝑖−1

2

Proof Idea:
1.   Establish SDP based lower bound:  [D.R. `16]

𝜇 ℒ 2 ≿ maxσ𝑖 rk 𝑃𝑖 nd 𝑃𝑖ℒ
2

s.t. σ𝑖 𝑃𝑖
∗𝑃𝑖 ≼ 𝐼𝑛

2. Build solution to above starting from any chain.



Lattice Density

ℒ

𝑟

lim
𝑟→∞

ℒ ∩ 𝑟𝐵2
𝑛

vol𝑛(𝑟𝐵2
𝑛)
=

1

det ℒ



Lattice Density

ℒ

lim
𝑟→∞

ℒ ∩ 𝑟𝐵2
𝑛

vol𝑛(𝑟𝐵2
𝑛)
=

1

det ℒ

𝑟

Global density of lattice points 
per unit volume



Minkowski’s First Theorem

1889

ℒ

ℒ ∩ 𝑟𝐵2
𝑛 ≥ 2−𝑛

vol𝑛(𝑟𝐵2
𝑛)

det ℒ

𝑟

Global density implies
“local density”



Reverse Minkowski Theorem

Regev-S.Davidowitz `17:
ℒ lattice dimension 𝑛.
If all sublattices of ℒ
have determinant at least 1 then:

ℒ has at most 2𝑂(log
2 𝑛 𝑟2) points at distance 𝑟.

Almost tight: ℤ𝑛 has 𝑛Ω(𝑘) points at distance 𝑟
for 𝑘 ≪ 𝑛.
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Notation

𝑀 ⊆ ℒ sublattice of dimension 𝑘
Convention: 𝑀 = {0} then det 𝑀 ≔ 1.

Normalized Determinant:

nd 𝑀 ≔ det 𝑀 Τ1 𝑘

Projected Sublattice:
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Densest Subspace Problem

nd∗ ℒ ≔ min
𝑀⊆ℒ
𝑀≠{0}

nd(𝑀)

𝛼-DSP: Given ℒ find 𝑀 ⊆ ℒ, 𝑀 ≠ {0}
such that nd 𝑀 ≤ 𝛼 nd∗(ℒ).

Remark: dimension of 𝑀 is not fixed!

Key primitive for finding sparse lattice 
projections. Will focus on this problem.  



Densest Subspace Problem 

Theorem:
Can solve 𝑂(log 𝑛)-DSP in 2𝑂(𝑛) time with 
high probability.   

High Level Approach: 
If ℒ is not approximate minimizer:
find 𝑦 ≠ 0, orthogonal to actual minimizer,
and recurse on ℒ ∩ 𝑦⊥



Canonical Polytope [Stuhler 76]

𝑛 dimensional lattice ℒ

0 1dim. 𝑛𝑛-12

{ 𝑘, log det 𝑀 : sublattice 𝑀 ⊆ ℒ, dim 𝑀 = 𝑘}

(𝑛, log det ℒ)

Log det

(0,0)

𝒫(ℒ)



Canonical Filtration [Stuhler 76]

𝑛 dimensional lattice ℒ

0 1dim. 𝑛𝑛-12

Form Chain: 0 = ℒ0 ⊂ ℒ1 ⊂ ⋯ ⊂ ℒ𝑘 = ℒ

(𝑛, log det ℒ)

Log det

(0,0) ℒ1

ℒ2

Vertices of 𝒫(ℒ) ℒ

{0}



Canonical Filtration [Stuhler 76]

𝑛 dimensional lattice ℒ

0 1dim. 𝑛𝑛-12

Form Chain: 0 = ℒ0 ⊂ ℒ1 ⊂ ⋯ ⊂ ℒ𝑘 = ℒ

(𝑛, log det ℒ)

Log det

(0,0) ℒ1

ℒ2

Slope: ln nd( Τℒ2 ℒ1) ℒ

{0}



Stable Lattice [Stuhler 76]

𝑛 dimensional lattice ℒ is stable

0 1dim. 𝑛𝑛-12

If canonical filtration is trivial: 0 ⊂ ℒ

(𝑛, log det ℒ)

Log det

(0,0)

ℒ

{0}

I.e. no dense sublattices



Stable Lattice [Stuhler 76]

Example: ℒ = ℤ𝑛

0 1dim. 𝑛𝑛-12

ℤ𝑛 has trivial filtration: 0 ⊂ ℤ𝑛

Log det

(0,0)

𝒫(ℒ)

{0}



Canonical Filtration [Stuhler 76]

1. Form Chain:   0 = ℒ0 ⊂ ℒ1 ⊂ ⋯ ⊂ ℒ𝑘 = ℒ .
2. Blocks Τℒ𝑖 ℒ𝑖−1 are stable.
3. Slope increasing: nd Τℒ𝑖 ℒ𝑖−1 < nd Τℒ𝑖+1 ℒ𝑖 .

0 1 𝑛𝑛-12

ℒ1

ℒ2

ℒ

{0}



Densest Subspace Problem 

𝑛 dimensional lattice ℒ

0 1dim. 𝑛𝑛-12

(𝑛, log det ℒ)

Log det

(0,0) ℒ1

ℒ2

Want sublattice with approx.
minimum slope. 

ℒ

{0}



Densest Subspace Problem 

High Level Approach: 
If ℒ is not approximate minimizer:
find 𝑦 ≠ 0, orthogonal to actual minimizer,
and recurse on ℒ ∩ 𝑦⊥

Q: Where to find 𝑦?
A: The dual lattice ℒ∗

Q: How to find it in ℒ∗?
A: Discrete Gaussian sampling  



𝑦 ∈ ℒ∗

A lattice ℒ ⊆ ℝ𝑛 is 𝐵ℤ𝑛 for a 
basis 𝐵 = 𝑏1, … , 𝑏𝑛 .

The dual lattice is
ℒ∗ = {𝑦 ∈ span ℒ :

𝑦T𝑥 ∈ ℤ ∀𝑥 ∈ ℒ}
ℒ∗ is generated by 𝐵−T.

Remark: ℤ𝑛 ∗ = ℤ𝑛

Dual Lattice

𝑦T𝑥 = 0 𝑦T𝑥 = 1 𝑦T𝑥 = 2 𝑦T𝑥 = 3 𝑦T𝑥 = 4

ℒ



𝑦 ∈ ℒ∗

A lattice ℒ ⊆ ℝ𝑛 is 𝐵ℤ𝑛 for a 
basis 𝐵 = 𝑏1, … , 𝑏𝑛 .

The dual lattice is
ℒ∗ = {𝑦 ∈ span ℒ :

𝑦T𝑥 ∈ ℤ ∀𝑥 ∈ ℒ}
ℒ∗ is generated by 𝐵−T.

det ℒ∗ = 1/det(ℒ)

Dual Lattice

𝑦T𝑥 = 0 𝑦T𝑥 = 1 𝑦T𝑥 = 2 𝑦T𝑥 = 3 𝑦T𝑥 = 4

ℒ



Discrete Gaussian Distribution



Discrete Gaussian Distribution

ADRS `15:
Can sample in 2𝑛+𝑜(𝑛) time for any parameter.



Main Procedure

Repeat until ℒ = {0}
𝑠 ← nd ℒ
Update 𝑀 ← ℒ if nd 𝑀 > 𝑠
Sample 𝑦 ∼ 𝐷ℒ∗,𝑐/𝑠 until 𝑦 ≠ 0

ℒ ← ℒ ∩ 𝑦⊥

Main Lemma: At any iteration, 
if ℒ not 𝑂(log 𝑛) approximate minimizer,
then ℒ ∩ 𝑦⊥ contains minimizer w.p. Ω 1 .

Proc. finds apx minimizer with prob. 2−𝑂(𝑛).



Proof of Main Lemma

wlog det ℒ = det(ℒ∗) = 1
ℒ1 ⊆ ℒ densest sublattice

sample 𝑦 ∼ 𝐷ℒ∗,𝑐

If nd ℒ1 ≪
1

log 𝑛

must show that 𝑦 ≠ 0 and 𝑦 ⊥ ℒ1 w.p. Ω(1).



det ℒ = det ℒ∗ = 1

ℒ1 ⊆ ℒ densest sublattice, nd ℒ1 ≪
1

log 𝑛

Sample 𝑦 ∼ 𝐷ℒ∗,𝑐

Want:
1. Pr 𝑦 = 0 ≤ 𝜖
2. Pr 𝑦 ∈ ℒ∗ ∩ ℒ1

⊥ ≥ 1 − 𝜖



det ℒ = det ℒ∗ = 1

1.     Pr
𝑦∼𝐷ℒ∗,𝑐

𝑦 = 0 =
1

𝜌𝑐(ℒ
∗)

≤
1

ℒ∗∩ 𝑛𝐵2
𝑛 𝑒− Τ𝑛 𝑐2

(By Minkowski)          ≤
1

2𝑛𝑒− Τ𝑛 𝑐2
= 𝑜(1)

𝜌𝑐 𝐴 ≔ σ𝑥∈𝐴 𝑒
− Τ𝑥 𝑐 2



det ℒ = det ℒ∗ = 1
ℒ1 ⊆ ℒ densest sublattice, nd ℒ1 ≪ Τ1 log 𝑛
𝑊 ≔ ℒ1

⊥

2.     Pr
𝑦∼𝐷ℒ∗,𝑐

𝑦 ∈ 𝑊 =
𝜌𝑐(ℒ

∗∩𝑊)

𝜌𝑐(ℒ
∗)

(ortho. is worst-case)  ≥
𝜌𝑐(ℒ

∗∩𝑊)

𝜌𝑐 ℒ∗∩𝑊 𝜌𝑐( Τℒ∗ 𝑊)

=
1

𝜌𝑐(ℒ
∗/𝑊)

𝜌𝑐 𝐴 ≔ σ𝑥∈𝐴 𝑒
− Τ𝑥 𝑐 2



det ℒ = det ℒ∗ = 1
ℒ1 ⊆ ℒ densest sublattice, nd ℒ1 ≪ Τ1 log 𝑛
𝑊 ≔ ℒ1

⊥

2.  Need to show 𝜌𝑐 Τℒ∗ 𝑊 ≤ 1 + 𝑜(1)

Key: nd∗ Τℒ∗ 𝑊 = Τ1 nd(ℒ1) ≫ log 𝑛

Reverse-Minkowski⇒

( Τℒ∗ 𝑊) ∩ 𝑟𝐵2
𝑛 ≪ 𝑒𝑜 𝑟2 , ∀𝑟 ≥ 0

𝜌𝑐 𝐴 ≔ σ𝑥∈𝐴 𝑒
− Τ𝑥 𝑐 2



Canonical Polytope of ℒ∗?

Assumption: det ℒ = 1

0 1dim. 𝑛𝑛-12

(𝑛, 0)
Log det

ℒ1

ℒ2

ℒ
{0}

det ℒ =1

Slope: ln nd(ℒ1)



Canonical Polytope of ℒ∗?

0 1dim. 𝑛𝑛-12

Log det

ℒ∗ ∩ ℒ1
⊥

ℒ∗ ∩ ℒ2
⊥

(𝑛, 0)

ℒ∗
{0}

det ℒ∗ = 1

Map 𝑀 → ℒ∗ ∩𝑀⊥



Canonical Polytope of ℒ∗?

0 1dim. 𝑛𝑛-12

Log det

ℒ∗ ∩ ℒ1
⊥

ℒ∗ ∩ ℒ2
⊥

(𝑛, 0)

ℒ∗
{0}

𝒫(ℒ∗) is “reflection” of 𝒫(ℒ)

Slope: −lnnd(ℒ1)

Τℒ∗ 𝑊

det ℒ∗ = 1



Conclusions

1. Algorithmic version of ℓ2 Kannan-Lovász
conjecture via discrete Gaussian sampling.

2. Lower bound certificates for covering radius that 
are tight within 𝑂(1) under slicing conjecture. 

Open Problem

1. Prove KL conjecture for general convex bodies.
2. Prove Slicing conjecture for Voronoi cells.


