On Approximating the Covering Radius and Finding Dense Lattice Subspaces

Daniel Dadush Centrum Wiskunde & Informatica (CWI)

ICERM April 2018

Outline

- 1. Integer Programming and the Kannan-Lovász (KL) Conjecture.
- 2. l₂ KL Conjecture & the Reverse Minkowski Conjecture.

3. Finding dense lattice subspaces.

Integer Programming (IP)

Open Question: Is there a $2^{O(n)}$ time algorithm?

First result: $2^{O(n^2)}$ [Lenstra `83] Best known complexity: $n^{O(n)}$ [Kannan `87]

 $\mu(K, \mathbb{Z}^n) \coloneqq \text{smallest}$ scaling *s* such that every shift sK + t contains an integer point.

 $\mu(K, \mathbb{Z}^n) \coloneqq \text{smallest}$ scaling *s* such that every shift sK + t contains an integer point.

 $\mu(K, \mathbb{Z}^n) \coloneqq \text{smallest}$ scaling *s* such that every shift sK + t contains an integer point.

 $\mu(K, \mathbb{Z}^n) \coloneqq \text{smallest}$ scaling *s* such that every shift sK + t contains an integer point.

Or *K* is "flat":

There exists rank $k \ge 1$ integer projection $P \in \mathbb{Z}^{n \times k}$ such $\operatorname{vol}_k(PK)^{\frac{1}{k}}$ is small.

Or *K* is "flat":

There exists rank $k \ge 1$ integer projection $P \in \mathbb{Z}^{n \times k}$ such $\operatorname{vol}_k(PK)^{\frac{1}{k}}$ is small.

Or *K* is "flat":

There exists rank $k \ge 1$ integer projection $P \in \mathbb{Z}^{n \times k}$ such $\operatorname{vol}_k(PK)^{\frac{1}{k}}$ is small.

Duality Relation

Either covering radius $\mu(K, \mathbb{Z}^n)$ is small or *K* is "flat".

Khinchine Flatness Theorem

 $1 \le \mu(K, \mathbb{Z}^n) \min_{\substack{P \in \mathbb{Z}^{1 \times n} \\ rk(P) = 1}} \operatorname{vol}_1(PK) \le \widetilde{O}(n^{4/3})$

[Khinchine `48, Babai `86, Hastad `86, Lenstra-Lagarias-Schnorr `87, Kannan-Lovasz `88, Banaszczyk `93-96, Banaszczyk-Litvak-Pajor-Szarek `99, Rudelson `00]

Kannan-Lovász Flatness Theorem

 $1 \le \mu(K, \mathbb{Z}^n) \min_{\substack{P \in \mathbb{Z}^{k \times n} \\ rk(P) = k \ge 1}} \operatorname{vol}_k(PK)^{\frac{1}{k}} \le n$

[Kannan `87, Kannan-Lovász `88]

Kannan-Lovász (KL) Conjecture

 $1 \le \mu(K, \mathbb{Z}^n) \min_{\substack{P \in \mathbb{Z}^{k \times n} \\ rk(P) = k \ge 1}} \operatorname{vol}_k(PK)^{\frac{1}{k}} \le O(\log n) \, !!$

Faster Algorithm for IP?

 $1 \le \mu(K, \mathbb{Z}^n) \min_{\substack{P \in \mathbb{Z}^{k \times n} \\ rk(P) = k \ge 1}} \operatorname{vol}_k(PK)^{\frac{1}{k}} \le O(\log n)$

D. `12: Assuming KL conjecture + *P* computable in $(\log n)^{O(n)}$ time then there is $(\log n)^{O(n)}$ time algorithm for IP.

Does the conjecture hold for ellipsoids?

An ellipsoid is $E = TB_2^n$

Answer: YES* [Regev-S.Davidowitz 17]

* up to polylogarithmic factors

Can we compute the projection P?

THIS TALK: YES, in $2^{O(n)}$ time.

Outline

1. Integer Programming and the Kannan-Lovász (KL) Conjecture.

2. ℓ_2 KL Conjecture & the Reverse Minkowski Conjecture.

3. Finding dense lattice subspaces.

 ℓ_2 Kannan-Lovász Conjecture

Easier to think of Euclidean ball vs general lattice.

Lattices

A lattice $\mathcal{L} \subseteq \mathbb{R}^n$ is $B\mathbb{Z}^n$ for a basis $B = (b_1, \dots, b_n)$.

 $\mathcal{L}(B)$ denotes the lattice generated by B.

Note: a lattice has many equivalent bases.

Lattices

A lattice $\mathcal{L} \subseteq \mathbb{R}^n$ is $B\mathbb{Z}^n$ for a basis $B = (b_1, \dots, b_n)$.

 $\mathcal{L}(B)$ denotes the lattice generated by B.

The determinant of \mathcal{L} is $|\det(B)|$.

Lattices

A lattice $\mathcal{L} \subseteq \mathbb{R}^n$ is $B\mathbb{Z}^n$ for a basis $B = (b_1, \dots, b_n)$.

 $\mathcal{L}(B)$ denotes the lattice generated by B.

The determinant of \mathcal{L} is $|\det(B)|$. Equal to volume of any **tiling** set.

ℓ_2 Covering Radius

$\mu(\mathcal{L}) \coloneqq \mu(B_2^n, \mathcal{L})$ Distance of farthest point to the lattice \mathcal{L} .

$\operatorname{vol}_n(B_2^n\mu(\mathcal{L})) \ge \operatorname{vol}_n(\mathcal{V}) = \operatorname{det}(\mathcal{L})$

 $\mu(\mathcal{L}) \geq \operatorname{vol}_n(B_2^n)^{-\frac{1}{n}} \det(\mathcal{L})^{\frac{1}{n}}$

 $\mu(\mathcal{L}) \gtrsim \sqrt{n} \det(\mathcal{L})^{\frac{1}{n}}$

 $\mu(\mathcal{L}) \geq \mu(\mathcal{L}_{\downarrow W})$

 $\mathcal{L}_{\downarrow W}$ projection onto W

 $\mu(\mathcal{L}) \geq \mu(\mathcal{L}_{\downarrow W}) \gtrsim \sqrt{k} \det(\mathcal{L}_{\downarrow W})^{\frac{1}{k}}$

 $\mathcal{L}_{\downarrow W}$ projection onto Wdim $(W) = k \ge 1$

$$\mu(\mathcal{L}) \gtrsim \max_{\dim(W)=k\geq 1} \sqrt{k} \det(\mathcal{L}_{\downarrow W})^{\frac{1}{k}}$$

 $\mathcal{L}_{\downarrow W}$ projection onto Wdim $(W) = k \ge 1$

Define $C_{KL,2}(n)$ to be smallest number such that

$$\mu(\mathcal{L}) \leq C_{KL,2}(n) \max_{\dim(W)=k \geq 1} \sqrt{k} \det(\mathcal{L}_{\downarrow W})^{\frac{1}{k}}$$

for all lattices of dimension at most *n*.

 $C_{KL,2}(n) = \Omega(\sqrt{\log n})$

Lower bound for \mathcal{L} with basis $e_1, \frac{1}{\sqrt{2}}e_2, \dots, \frac{1}{\sqrt{n}}e_n$.

KL Bounds

- $\mu(\mathcal{L}) \leq C_{KL,2}(n) \max_{\dim(W)=k \geq 1} \sqrt{k} \det(\mathcal{L}_{\downarrow W})^{\frac{1}{k}}$
- Kannan-Lovász `88: \sqrt{n}
- D. Regev `16: $\log^{O(1)} n$

Assuming Reverse Minkowski Conjecture.

Regev, S.Davidowitz `17: $\log^{3/2} n$

Reverse Minkowski Conjecture is proved!

Our Results

- *n* dimensional lattice $\mathcal{L} \coloneqq \mathcal{L}(B)$
- 1. Can compute subspace W, $\dim(W) = k \ge 1$ $\mu(\mathcal{L}) \le O(\log^{2.5} n) \sqrt{k} \det(\mathcal{L}_{\downarrow W})^{\frac{1}{k}}$
 - in $2^{O(n)}$ time with high probability.

Prior work: Kannan Lovász `88: \sqrt{n} in $2^{O(n)}$ time. D. Micciancio `13: best subspace in $n^{O(n^2)}$ time.

Our Results

- *n* dimensional lattice $\mathcal{L} \coloneqq \mathcal{L}(B)$
- Can combine lower bounds over different subspaces to certify μ(L) up to the slicing constant L_n for "stable" Voronoi cells*.

* If $\operatorname{vol}_{n}(\mathcal{V}) = 1$ can find hyperplane H s.t. $\operatorname{vol}_{n-1}(\mathcal{V} \cap H) = \Omega(\frac{1}{L_{n}})$

Our Results

- *n* dimensional lattice $\mathcal{L} \coloneqq \mathcal{L}(B)$
- Can combine lower bounds over different subspaces to certify μ(L) up to the slicing constant L_n for "stable" Voronoi cells*.

Slicing Conjecture: $L_n = O(1)$ for all convex bodies! For "stable" Voronoi cells: $L_n = O(\log n)$ [RS `17]

Notation

$M \subseteq \mathcal{L}$ sublattice of dimension kConvention: $M = \{0\}$ then det(M) := 1.

Normalized Determinant: $nd(M) \coloneqq det(M)^{1/k}$

Projected Sublattice: $\mathcal{L}/M \coloneqq \mathcal{L}$ projected onto $\operatorname{span}(M)^{\perp}$

Lower Bounds for Chains

Theorem [D. 17]: For $\{0\} = \mathcal{L}_0 \subset \mathcal{L}_1 \subset \cdots \subset \mathcal{L}_k = \mathcal{L}$ then

 $\mu(\mathcal{L})^2 \gtrsim \sum_{i=1}^k \dim(\mathcal{L}_i/\mathcal{L}_{i-1}) \operatorname{nd}(\mathcal{L}/\mathcal{L}_{i-1})^2$

Only "missing ingredient": Combined with techniques from [R.S. 17] easily get tightness within slicing constant L_n .

Lower Bounds for Chains

Theorem [D. 17]: For $\{0\} = \mathcal{L}_0 \subset \mathcal{L}_1 \subset \cdots \subset \mathcal{L}_k = \mathcal{L}$ then

 $\mu(\mathcal{L})^2 \gtrsim \sum_{i=1}^k \dim(\mathcal{L}_i/\mathcal{L}_{i-1}) \operatorname{nd}(\mathcal{L}/\mathcal{L}_{i-1})^2$

Proof Idea:

1. Establish SDP based lower bound: [D.R. `16] $\mu(\mathcal{L})^2 \gtrsim \max \sum_i \operatorname{rk}(P_i) \operatorname{nd}(P_i \mathcal{L})^2$ s.t. $\sum_i P_i^* P_i \leq I_n$

2. Build solution to above starting from any chain.

Lattice Density

Lattice Density

r

$\lim_{r \to \infty} \frac{|\mathcal{L} \cap rB_2^n|}{\operatorname{vol}_n(rB_2^n)} = \frac{1}{\det(\mathcal{L})}$

Global density of lattice points per unit volume

Minkowski's First Theorem

1889

Global density implies "local density"

$$|\mathcal{L} \cap rB_2^n| \ge 2^{-n} \frac{\operatorname{vol}_n(rB_2^n)}{\det(\mathcal{L})}$$

Reverse Minkowski Theorem

Regev-S.Davidowitz `17: \mathcal{L} lattice dimension n. If all sublattices of \mathcal{L} have determinant at least 1 then:

 \mathcal{L} has at most $2^{O(\log^2 n r^2)}$ points at distance r.

Almost tight: \mathbb{Z}^n has $n^{\Omega(k)}$ points at distance r for $k \ll n$.

Outline

- 1. Integer Programming and the Kannan-Lovász (KL) Conjecture.
- 2. l₂ KL Conjecture & the Reverse Minkowski Conjecture.

3. Finding dense lattice subspaces.

Notation

$M \subseteq \mathcal{L}$ sublattice of dimension kConvention: $M = \{0\}$ then det(M) := 1.

Normalized Determinant: $nd(M) \coloneqq det(M)^{1/k}$

Projected Sublattice: $\mathcal{L}/M \coloneqq \mathcal{L}$ projected onto $\operatorname{span}(M)^{\perp}$

Densest Subspace Problem

$$\operatorname{nd}^*(\mathcal{L}) \coloneqq \min_{\substack{M \subseteq \mathcal{L} \\ M \neq \{0\}}} \operatorname{nd}(M)$$

 α -DSP: Given \mathcal{L} find $M \subseteq \mathcal{L}, M \neq \{0\}$ such that $nd(M) \leq \alpha nd^*(\mathcal{L})$.

Remark: dimension of *M* is not fixed!

Key primitive for finding sparse lattice projections. Will focus on this problem.

Densest Subspace Problem

Theorem:

Can solve $O(\log n)$ -DSP in $2^{O(n)}$ time with high probability.

High Level Approach:

If \mathcal{L} is not approximate minimizer: find $y \neq 0$, orthogonal to actual minimizer, and recurse on $\mathcal{L} \cap y^{\perp}$

 $\{(k, \log \det(M)): \text{sublattice } M \subseteq \mathcal{L}, \dim(M) = k\}$

If canonical filtration is trivial: $\{0\} \subset \mathcal{L}$

 \mathbb{Z}^n has trivial filtration: $\{0\} \subset \mathbb{Z}^n$

- 1. Form Chain: $\{0\} = \mathcal{L}_0 \subset \mathcal{L}_1 \subset \cdots \subset \mathcal{L}_k = \mathcal{L}$.
- 2. Blocks $\mathcal{L}_i / \mathcal{L}_{i-1}$ are stable.
- 3. Slope increasing: $nd(\mathcal{L}_i/\mathcal{L}_{i-1}) < nd(\mathcal{L}_{i+1}/\mathcal{L}_i)$.

Densest Subspace Problem

High Level Approach: If \mathcal{L} is not approximate minimizer: find $y \neq 0$, orthogonal to actual minimizer, and recurse on $\mathcal{L} \cap y^{\perp}$

Q: Where to find y? A: The dual lattice \mathcal{L}^*

Q: How to find it in *L**? A: Discrete Gaussian sampling

Dual Lattice

A lattice $\mathcal{L} \subseteq \mathbb{R}^n$ is $B\mathbb{Z}^n$ for a basis $B = (b_1, \dots, b_n)$.

The dual lattice is $\mathcal{L}^* = \{y \in \operatorname{span}(\mathcal{L}):$ $y^T x \in \mathbb{Z} \ \forall x \in \mathcal{L}\}$ \mathcal{L}^* is generated by B^{-T} .

Remark:
$$(\mathbb{Z}^n)^* = \mathbb{Z}^n$$

Dual Lattice

A lattice $\mathcal{L} \subseteq \mathbb{R}^n$ is $B\mathbb{Z}^n$ for a basis $B = (b_1, \dots, b_n)$.

The dual lattice is $\mathcal{L}^* = \{y \in \text{span}(\mathcal{L}):$ $y^T x \in \mathbb{Z} \ \forall x \in \mathcal{L}\}$ \mathcal{L}^* is generated by B^{-T} .

```
\det(\mathcal{L}^*) = 1/\det(\mathcal{L})
```


Discrete Gaussian Distribution

Discrete Gaussian Distribution

Main Procedure

Repeat until $\mathcal{L} = \{0\}$ $s \leftarrow \operatorname{nd}(\mathcal{L})$ Update $M \leftarrow \mathcal{L}$ if $\operatorname{nd}(M) > s$ Sample $y \sim D_{\mathcal{L}^*, c/s}$ until $y \neq 0$ $\mathcal{L} \leftarrow \mathcal{L} \cap y^{\perp}$

Main Lemma: At any iteration, if \mathcal{L} not $O(\log n)$ approximate minimizer, then $\mathcal{L} \cap y^{\perp}$ contains minimizer w.p. $\Omega(1)$.

Proc. finds apx minimizer with prob. $2^{-O(n)}$.

Proof of Main Lemma

wlog $det(\mathcal{L}) = det(\mathcal{L}^*) = 1$ $\mathcal{L}_1 \subseteq \mathcal{L}$ densest sublattice

sample $y \sim D_{\mathcal{L}^*,c}$

If
$$\operatorname{nd}(\mathcal{L}_1) \ll \frac{1}{\log n}$$

must show that $y \neq 0$ and $y \perp \mathcal{L}_1$ w.p. $\Omega(1)$.

 $det(\mathcal{L}) = det(\mathcal{L}^*) = 1$ $\mathcal{L}_1 \subseteq \mathcal{L} \text{ densest sublattice, } nd(\mathcal{L}_1) \ll \frac{1}{\log n}$

Sample
$$y \sim D_{\mathcal{L}^*,c}$$

Want: 1. $\Pr[y = 0] \le \epsilon$ 2. $\Pr[y \in \mathcal{L}^* \cap \mathcal{L}_1^{\perp}] \ge 1 - \epsilon$

 $\det(\mathcal{L}) = \det(\mathcal{L}^*) = 1$

1.
$$\Pr_{y \sim D_{\mathcal{L}^*, c}} [y = 0] = \frac{1}{\rho_c(\mathcal{L}^*)}$$
$$\leq \frac{1}{|\mathcal{L}^* \cap \sqrt{n}B_2^n| e^{-n/c^2}}$$
(By Minkowski)
$$\leq \frac{1}{2^n e^{-n/c^2}} = o(1)$$

 $\rho_c(A) \coloneqq \sum_{x \in A} e^{-\|x/c\|^2}$

 $det(\mathcal{L}) = det(\mathcal{L}^*) = 1$ $\mathcal{L}_1 \subseteq \mathcal{L} \text{ densest sublattice, } nd(\mathcal{L}_1) \ll 1/\log n$ $W \coloneqq \mathcal{L}_1^{\perp}$

2.
$$\Pr_{y \sim D_{\mathcal{L}^*,c}} [y \in W] = \frac{\rho_c(\mathcal{L}^* \cap W)}{\rho_c(\mathcal{L}^*)}$$

(ortho. is worst-case) $\geq \frac{\rho_c(\mathcal{L}^* \cap W)}{\rho_c(\mathcal{L}^* \cap W)\rho_c(\mathcal{L}^*/W)}$
$$= \frac{1}{\rho_c(\mathcal{L}^*/W)}$$

$$\rho_c(A) \coloneqq \sum_{x \in A} e^{-\|x/c\|^2}$$

 $det(\mathcal{L}) = det(\mathcal{L}^*) = 1$ $\mathcal{L}_1 \subseteq \mathcal{L} \text{ densest sublattice, } nd(\mathcal{L}_1) \ll 1/\log n$ $W \coloneqq \mathcal{L}_1^{\perp}$

2. Need to show $\rho_c(\mathcal{L}^*/W) \leq 1 + o(1)$

Key: $nd^*(\mathcal{L}^*/W) = 1/nd(\mathcal{L}_1) \gg \log n$

Reverse-Minkowski \Rightarrow $|(\mathcal{L}^*/W) \cap rB_2^n| \ll e^{o(r^2)}, \forall r \ge 0$

 $\rho_c(A) \coloneqq \sum_{x \in A} e^{-\|x/c\|^2}$

Assumption: $det(\mathcal{L}) = 1$

 $\mathcal{P}(\mathcal{L}^*)$ is "reflection" of $\mathcal{P}(\mathcal{L})$

Conclusions

- 1. Algorithmic version of ℓ_2 Kannan-Lovász conjecture via discrete Gaussian sampling.
- 2. Lower bound certificates for covering radius that are tight within O(1) under slicing conjecture.

Open Problem

- 1. Prove KL conjecture for general convex bodies.
- 2. Prove Slicing conjecture for Voronoi cells.