On Approximating the Covering Radius and Finding Dense Lattice Subspaces

Daniel Dadush
Centrum Wiskunde \& Informatica (CWI)

ICERM April 2018

Outline

1. Integer Programming and the Kannan-Lovász (KL) Conjecture.
2. ℓ_{2} KL Conjecture \&
the Reverse Minkowski Conjecture.
3. Finding dense lattice subspaces.

Integer Programming (IP)

$\min c x$

$$
\begin{array}{r}
\text { s.t. } A x \leq b \\
x \in \mathbb{Z}^{n}
\end{array}
$$

n variables, m constraints

Open Question: Is there a $2^{O(n)}$ time algorithm?

First result: $2^{O\left(n^{2}\right)}$ [Lenstra `83] Best known complexity: \(n^{O(n)}\) [Kannan`87]

Main Dichotomy

$\mu\left(K, \mathbb{Z}^{n}\right):=$ smallest scaling s such that every shift $s K+t$ contains an integer point.

Either covering radius $\mu\left(K, \mathbb{Z}^{n}\right) \leq 1$.

Main Dichotomy

$\mu\left(K, \mathbb{Z}^{n}\right):=$ smallest scaling s such that every shift $s K+t$ contains an integer point.

Either covering radius $\mu\left(K, \mathbb{Z}^{n}\right) \leq 1$.

Main Dichotomy

$\mu\left(K, \mathbb{Z}^{n}\right):=$ smallest scaling s such that every shift $s K+t$ contains an integer point.

Either covering radius $\mu\left(K, \mathbb{Z}^{n}\right) \leq 1$.

Main Dichotomy

$\mu\left(K, \mathbb{Z}^{n}\right):=$ smallest scaling s such that every shift $s K+t$ contains an integer point.

Either covering radius $\mu\left(K, \mathbb{Z}^{n}\right) \leq 1$.

Main Dichotomy

Can find integer point in $2^{O(n)}$ time [D. 12]

Either covering radius $\mu\left(K, \mathbb{Z}^{n}\right) \leq 1$.

Main Dichotomy

Or K is "flat":

Projection on y-axis

$$
P=\left(\begin{array}{ll}
0 & 1
\end{array}\right)
$$

. \mathbb{Z}^{2}

There exists rank $k \geq 1$ integer projection $P \in \mathbb{Z}^{n \times k}$ such $\operatorname{vol}_{k}(P K)^{\frac{1}{k}}$ is small.

Main Dichotomy

Or K is "flat":

Projection on y-axis

$$
P=\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{\bullet}
$$

\mathbb{Z}^{2}

There exists rank $k \geq 1$ integer projection $P \in \mathbb{Z}^{n \times k}$ such $\operatorname{vol}_{k}(P K)^{\frac{1}{k}}$ is small.

Main Dichotomy

Or K is "flat":

There exists rank $k \geq 1$ integer projection $P \in \mathbb{Z}^{n \times k}$ such $\operatorname{vol}_{k}(P K)^{\frac{1}{k}}$ is small.

Duality Relation

$$
1 \leq \mu\left(K, \mathbb{Z}^{n}\right) \min _{\substack{P \in \mathbb{Z}^{k \times n} \\ r k(P)=k \geq 1}} \operatorname{vol}_{k}(P K)^{\frac{1}{k} \leq ? ~}
$$

Either covering radius $\mu\left(K, \mathbb{Z}^{n}\right)$ is small or K is "flat".

Khinchine Flatness Theorem

[Khinchine `48, Babai `86, Hastad `86, Lenstra-LagariasSchnorr `87, Kannan-Lovasz `88, Banaszczyk `93-96, Banaszczyk-Litvak-Pajor-Szarek `99, Rudelson `oo]

Kannan-Lovász Flatness Theorem

[Kannan `87, Kannan-Lovász `88]

Kannan-Lovász (KL) Conjecture

$$
1 \leq \mu\left(K, \mathbb{Z}^{n}\right) \min _{\substack{P \in \mathbb{Z}^{k \times n} \\ r k(P)=k \geq 1}} \operatorname{vol}_{k}(P K)^{\frac{1}{k}} \leq O(\log n)!!
$$

Faster Algorithm for IP?

$$
1 \leq \mu\left(K, \mathbb{Z}^{n}\right) \min _{\substack{P \in \mathbb{Z}^{k \times n} \\ r k(P)=k \geq 1}} \operatorname{vol}_{k}(P K)^{\frac{1}{k}} \leq O(\log n)
$$

D. `12: Assuming KL conjecture
$+P$ computable in $(\log n)^{O(n)}$ time then there is $(\log n)^{O(n)}$ time algorithm for IP.

ℓ_{2} Kannan-Lovász Conjecture

Does the conjecture hold for ellipsoids?

An ellipsoid is $E=T B_{2}^{n}$

ℓ_{2} Kannan-Lovász Conjecture

Answer: YES* [Regev-S.Davidowitz 17]

* up to polylogarithmic factors

ℓ_{2} Kannan-Lovász Conjecture

Can we compute the projection P ?

THIS TALK: YES, in $2^{O(n)}$ time.

Outline

1. Integer Programming and the Kannan-Lovász (KL) Conjecture.
2. $\ell_{2} \mathrm{KL}$ Conjecture \& the Reverse Minkowski Conjecture.
3. Finding dense lattice subspaces.

ℓ_{2} Kannan-Lovász Conjecture

Easier to think of Euclidean ball vs general lattice.

Lattices

A lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$ is $B \mathbb{Z}^{n}$ for a basis $B=\left(b_{1}, \ldots, b_{n}\right)$.
$\mathcal{L}(B)$ denotes the lattice generated by B.

Note: a lattice has many equivalent bases.

Lattices

A lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$ is $B \mathbb{Z}^{n}$ for a basis $B=\left(b_{1}, \ldots, b_{n}\right)$.
$\mathcal{L}(B)$ denotes the lattice generated by B.

The determinant of \mathcal{L} is $|\operatorname{det}(B)|$.

Lattices

A lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$ is $B \mathbb{Z}^{n}$ for a basis $B=\left(b_{1}, \ldots, b_{n}\right)$.
$\mathcal{L}(B)$ denotes the lattice generated by B.

The determinant of \mathcal{L} is $|\operatorname{det}(B)|$.
Equal to volume of any tiling set.

ℓ_{2} Covering Radius

$$
\mu(\mathcal{L}):=\mu\left(B_{2}^{n}, \mathcal{L}\right)
$$

Distance of farthest point to the lattice \mathcal{L}.

Voronoi cell $\mathcal{V}:=$ all points closer to 0

Volumetric Lower Bounds

$$
\operatorname{vol}_{n}\left(B_{2}^{n} \mu(\mathcal{L})\right) \geq \operatorname{vol}_{\mathrm{n}}(\mathcal{V})=\operatorname{det}(\mathcal{L})
$$

Voronoi cell $\mathcal{V}:=$ all points closer to 0

Volumetric Lower Bounds

$$
\mu(\mathcal{L}) \geq \operatorname{vol}_{\mathrm{n}}\left(B_{2}^{n}\right)^{-\frac{1}{n}} \operatorname{det}(\mathcal{L})^{\frac{1}{n}}
$$

Voronoi cell $\mathcal{V}:=$ all points closer to 0

Volumetric Lower Bounds

$$
\mu(\mathcal{L}) \gtrsim \sqrt{n} \operatorname{det}(\mathcal{L})^{\frac{1}{n}}
$$

Voronoi cell $\mathcal{V}:=$ all points closer to 0

Volumetric Lower Bounds

$$
\mu(\mathcal{L}) \geq \mu\left(\mathcal{L}_{\downarrow W}\right)
$$

$\mathcal{L}_{\mathcal{L}_{W}}$ projection onto W

Volumetric Lower Bounds

$$
\mu(\mathcal{L}) \geq \mu\left(\mathcal{L}_{J W}\right) \gtrsim \sqrt{k} \operatorname{det}\left(\mathcal{L}_{J W}\right)^{\frac{1}{k}}
$$

$\mathcal{L}_{\downarrow_{W}}$ projection onto W $\operatorname{dim}(W)=k \geq 1$

Volumetric Lower Bounds

$$
\mu(\mathcal{L}) \gtrsim \max _{\operatorname{dim}(W)=k \geq 1} \sqrt{k} \operatorname{det}\left(\mathcal{L}_{\downarrow W}\right)^{\frac{1}{k}}
$$

$\mathcal{L}_{\downarrow_{W}}$ projection onto W $\operatorname{dim}(W)=k \geq 1$

ℓ_{2} Kannan-Lovász Conjecture

Define $C_{K L, 2}(n)$ to be smallest number such that

$$
\mu(\mathcal{L}) \leq C_{K L, 2}(n) \max _{\operatorname{dim}(W)=k \geq 1} \sqrt{k} \operatorname{det}\left(\mathcal{L}_{\downarrow W}\right)^{\frac{1}{k}}
$$

for all lattices of dimension at most n.
$C_{K L, 2}(n)=\Omega(\sqrt{\log n})$
Lower bound for \mathcal{L} with basis $e_{1}, \frac{1}{\sqrt{2}} e_{2}, \ldots, \frac{1}{\sqrt{n}} e_{n}$.

KL Bounds

$$
\mu(\mathcal{L}) \leq C_{K L, 2}(n) \max _{\operatorname{dim}(W)=k \geq 1} \sqrt{k} \operatorname{det}\left(\mathcal{L}_{\downarrow W}\right)^{\frac{1}{k}}
$$

Kannan-Lovász `88: \(\sqrt{n}\) D. Regev `16: $\log ^{O(1)} n$

Assuming Reverse Minkowski Conjecture.
Regev, S.Davidowitz `17: $\log ^{3 / 2} n$
Reverse Minkowski Conjecture is proved!

Our Results

n dimensional lattice $\mathcal{L}:=\mathcal{L}(B)$

1. Can compute subspace $W, \operatorname{dim}(W)=k \geq 1$

$$
\mu(\mathcal{L}) \leq O\left(\log ^{2.5} n\right) \sqrt{k} \operatorname{det}\left(\mathcal{L}_{\downarrow W}\right)^{\frac{1}{k}}
$$

in $2^{O(n)}$ time with high probability.

Prior work:

Kannan Lovász `8: \(\sqrt{n}\) in \(2^{O(n)}\) time. D. Micciancio `13: best subspace in $n^{O\left(n^{2}\right)}$ time.

Our Results

n dimensional lattice $\mathcal{L}:=\mathcal{L}(B)$
2. Can combine lower bounds over different subspaces to certify $\mu(L)$ up to the slicing constant L_{n} for "stable" Voronoi cells*. * $\operatorname{If} \operatorname{vol}_{\mathrm{n}}(\mathcal{V})=1$ can find hyperplane H s.t.

$$
\operatorname{vol}_{\mathrm{n}-1}(\mathcal{V} \cap H)=\Omega\left(\frac{1}{L_{n}}\right)
$$

Our Results

n dimensional lattice $\mathcal{L}:=\mathcal{L}(B)$
2. Can combine lower bounds over different subspaces to certify $\mu(L)$ up to the slicing constant L_{n} for "stable" Voronoi cells*.

Slicing Conjecture: $L_{n}=O(1)$ for all convex bodies! For "stable" Voronoi cells: $L_{n}=O(\log n)\left[R S{ }^{`} 17\right]$

Notation

$M \subseteq \mathcal{L}$ sublattice of dimension k Convention: $M=\{0\}$ then $\operatorname{det}(M):=1$.

Normalized Determinant:

$$
\operatorname{nd}(M):=\operatorname{det}(M)^{1 / k}
$$

Projected Sublattice:

$$
\mathcal{L} / M:=\mathcal{L} \text { projected onto } \operatorname{span}(M)^{\perp}
$$

Lower Bounds for Chains

Theorem [D. 17]:

For $\{0\}=\mathcal{L}_{0} \subset \mathcal{L}_{1} \subset \cdots \subset \mathcal{L}_{k}=\mathcal{L}$ then

$$
\mu(\mathcal{L})^{2} \gtrsim \sum_{i=1}^{k} \operatorname{dim}\left(\mathcal{L}_{i} / \mathcal{L}_{i-1}\right) \operatorname{nd}\left(\mathcal{L} / \mathcal{L}_{i-1}\right)^{2}
$$

Only "missing ingredient":
Combined with techniques from [R.S. `17] easily get tightness within slicing constant L_{n}.

Lower Bounds for Chains

Theorem [D. 17]:
For $\{0\}=\mathcal{L}_{0} \subset \mathcal{L}_{1} \subset \cdots \subset \mathcal{L}_{k}=\mathcal{L}$ then

$$
\mu(\mathcal{L})^{2} \gtrsim \sum_{i=1}^{k} \operatorname{dim}\left(\mathcal{L}_{i} / \mathcal{L}_{i-1}\right) \operatorname{nd}\left(\mathcal{L} / \mathcal{L}_{i-1}\right)^{2}
$$

Proof Idea:

1. Establish SDP based lower bound: [D.R. `16]

$$
\mu(\mathcal{L})^{2} \gtrsim \max \sum_{i} \operatorname{rk}\left(P_{i}\right) \operatorname{nd}\left(P_{i} \mathcal{L}\right)^{2}
$$

$$
\text { s.t. } \sum_{i} P_{i}^{*} P_{i} \preccurlyeq I_{n}
$$

2. Build solution to above starting from any chain.

Lattice Density

$\lim _{r \rightarrow \infty} \frac{\left|\mathcal{L} \cap r B_{2}^{n}\right|}{\operatorname{vol}_{n}\left(r B_{2}^{n}\right)}=\frac{1}{\operatorname{det}(\mathcal{L})}$

Lattice Density

$\lim _{r \rightarrow \infty} \frac{\left|\mathcal{L} \cap r B_{2}^{n}\right|}{\operatorname{vol}_{n}\left(r B_{2}^{n}\right)}=\frac{1}{\operatorname{det}(\mathcal{L})}$

Global density of lattice points per unit volume

Minkowski's First Theorem

$$
\left|\mathcal{L} \cap r B_{2}^{n}\right| \geq 2^{-n} \frac{\operatorname{vol}_{n}\left(r B_{2}^{n}\right)}{\operatorname{det}(\mathcal{L})}
$$

Global density implies "local density"

Reverse Minkowski Theorem

Regev-S.Davidowitz `17:
\mathcal{L} lattice dimension n.
If all sublattices of \mathcal{L} have determinant at least 1 then:
\mathcal{L} has at most $2^{O\left(\log ^{2} n r^{2}\right)}$ points at distance r.
Almost tight: \mathbb{Z}^{n} has $n^{\Omega(k)}$ points at distance r for $k \ll n$.

Outline

1. Integer Programming and the Kannan-Lovász (KL) Conjecture.
 2. $\ell_{2} \mathrm{KL}$ Conjecture \& the Reverse Minkowski Conjecture.

3. Finding dense lattice subspaces.

Notation

$M \subseteq \mathcal{L}$ sublattice of dimension k Convention: $M=\{0\}$ then $\operatorname{det}(M):=1$.

Normalized Determinant:

$$
\operatorname{nd}(M):=\operatorname{det}(M)^{1 / k}
$$

Projected Sublattice:

$$
\mathcal{L} / M:=\mathcal{L} \text { projected onto } \operatorname{span}(M)^{\perp}
$$

Densest Subspace Problem

$\operatorname{nd}^{*}(\mathcal{L}):=\min _{\substack{M \subseteq \mathcal{L} \\ M \neq\{0\}}} \operatorname{nd}(M)$
α-DSP: Given \mathcal{L} find $M \subseteq \mathcal{L}, M \neq\{0\}$ such that $\mathrm{nd}(M) \leq \alpha \mathrm{nd}^{*}(\mathcal{L})$.

Remark: dimension of M is not fixed!

Key primitive for finding sparse lattice projections. Will focus on this problem.

Densest Subspace Problem

Theorem:
Can solve $O(\log n)$-DSP in $2^{O(n)}$ time with high probability.

High Level Approach:
If \mathcal{L} is not approximate minimizer:
find $y \neq 0$, orthogonal to actual minimizer, and recurse on $\mathcal{L} \cap y^{\perp}$

Canonical Polytope [Stuhler 76]

n dimensional lattice \mathcal{L}

Log det
$(0,0)$
$(n, \log \operatorname{det} \mathcal{L})$
$\mathcal{P}(\mathcal{L})$
dim.
$0 \quad 1 \quad 2$
$n-1 \quad n$
$\{(k, \log \operatorname{det}(M)):$ sublattice $M \subseteq \mathcal{L}, \operatorname{dim}(M)=k\}$

Canonical Filtration [Stuhler 76]

n dimensional lattice \mathcal{L}
Log det

dim. ${ }^{\{0\}} 0 \quad 1 \quad 2 \quad n-1 \quad n$
Form Chain: $\{0\}=\mathcal{L}_{0} \subset \mathcal{L}_{1} \subset \cdots \subset \mathcal{L}_{k}=\mathcal{L}$

Canonical Filtration [Stuhler 76]

n dimensional lattice \mathcal{L}

Log jet
Slope: $\ln \operatorname{nd}\left(\mathcal{L}_{2} / \mathcal{L}_{1}\right)$
$(0,0)$
$(n, \log \operatorname{det} \mathcal{L})$
dim.
$\{0\} \begin{array}{lll}0 & 1 & 2\end{array}$
$n-1 \quad n$
Form Chain: $\{0\}=\mathcal{L}_{0} \subset \mathcal{L}_{1} \subset \cdots \subset \mathcal{L}_{k}=\mathcal{L}$

Stable Lattice [Stuhler 76]

 n dimensional lattice \mathcal{L} is stable Log detIf canonical filtration is trivial: $\{0\} \subset \mathcal{L}$

Stable Lattice [Stuhler 76]

Example: $\mathcal{L}=\mathbb{Z}^{n}$

Log det	$\mathcal{P}(\mathcal{L})$

$(0,0)$
dim.
$\{0\}$
$0 \quad 1 \quad 2$
$n-1$
n
\mathbb{Z}^{n} has trivial filtration: $\{0\} \subset \mathbb{Z}^{n}$

Canonical Filtration [Stuhler 76]

1. Form Chain: $\{0\}=\mathcal{L}_{0} \subset \mathcal{L}_{1} \subset \cdots \subset \mathcal{L}_{k}=\mathcal{L}$. 2. Blocks $\mathcal{L}_{i} / \mathcal{L}_{i-1}$ are stable.
2. Slope increasing: $\operatorname{nd}\left(\mathcal{L}_{i} / \mathcal{L}_{i-1}\right)<\operatorname{nd}\left(\mathcal{L}_{i+1} / \mathcal{L}_{i}\right)$.

Densest Subspace Problem

n dimensional lattice \mathcal{L}

Densest Subspace Problem

High Level Approach:
If \mathcal{L} is not approximate minimizer:
find $y \neq 0$, orthogonal to actual minimizer, and recurse on $\mathcal{L} \cap y^{\perp}$

Q: Where to find y ?
A: The dual lattice \mathcal{L}^{*}
Q: How to find it in \mathcal{L}^{*} ?
A: Discrete Gaussian sampling

Dual Lattice

A lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$ is $B \mathbb{Z}^{n}$ for a basis $B=\left(b_{1}, \ldots, b_{n}\right)$.

The dual lattice is $\mathcal{L}^{*}=\{y \in \operatorname{span}(\mathcal{L}):$

$$
\left.y^{\mathrm{T}} x \in \mathbb{Z} \forall x \in \mathcal{L}\right\}
$$

\mathcal{L}^{*} is generated by $B^{-\mathrm{T}}$.
Remark: $\left(\mathbb{Z}^{n}\right)^{*}=\mathbb{Z}^{n}$

Dual Lattice

A lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$ is $B \mathbb{Z}^{n}$ for a basis $B=\left(b_{1}, \ldots, b_{n}\right)$.

The dual lattice is
$\mathcal{L}^{*}=\{y \in \operatorname{span}(\mathcal{L}):$

$$
\left.y^{\mathrm{T}} x \in \mathbb{Z} \forall x \in \mathcal{L}\right\}
$$

\mathcal{L}^{*} is generated by B^{-T}.
$\operatorname{det}\left(\mathcal{L}^{*}\right)=1 / \operatorname{det}(\mathcal{L})$

Discrete Gaussian Distribution

$$
D_{\mathcal{L}, s}:=\operatorname{Pr}[y] \propto e^{-\|y\|^{2 /} / s^{2}}
$$

Discrete Gaussian Distribution

$$
D_{\mathcal{L}, s}:=\operatorname{Pr}[\mathbf{y}] \propto e^{-\|\mathbf{y}\|^{2} / s^{2}}
$$

ADRS `15:

Can sample in $2^{n+o(n)}$ time for any parameter.

$$
s=4
$$

Main Procedure

Repeat until $\mathcal{L}=\{0\}$
$s \leftarrow \operatorname{nd}(\mathcal{L})$
Update $M \leftarrow \mathcal{L}$ if $\operatorname{nd}(M)>s$
Sample $y \sim D_{\mathcal{L}^{*}, c / s}$ until $y \neq 0$ $\mathcal{L} \leftarrow \mathcal{L} \cap y^{\perp}$

Main Lemma: At any iteration,
if $\mathcal{L} \operatorname{not} O(\log n)$ approximate minimizer, then $\mathcal{L} \cap y^{\perp}$ contains minimizer w.p. $\Omega(1)$.
Proc. finds apx minimizer with prob. $2^{-O(n)}$.

Proof of Main Lemma

$w \log \operatorname{det}(\mathcal{L})=\operatorname{det}\left(\mathcal{L}^{*}\right)=1$
$\mathcal{L}_{1} \subseteq \mathcal{L}$ densest sublattice
sample $y \sim D_{\mathcal{L}^{*}, c}$
If $\operatorname{nd}\left(\mathcal{L}_{1}\right) \ll \frac{1}{\log n}$
must show that $y \neq 0$ and $y \perp \mathcal{L}_{1}$ w.p. $\Omega(1)$.
$\operatorname{det}(\mathcal{L})=\operatorname{det}\left(\mathcal{L}^{*}\right)=1$
$\mathcal{L}_{1} \subseteq \mathcal{L}$ densest sublattice, $\operatorname{nd}\left(\mathcal{L}_{1}\right) \ll \frac{1}{\log n}$
Sample $y \sim D_{\mathcal{L}^{*}, c}$
Want:

1. $\operatorname{Pr}[y=0] \leq \epsilon$
2. $\operatorname{Pr}\left[y \in \mathcal{L}^{*} \cap \mathcal{L}_{1}^{\perp}\right] \geq 1-\epsilon$

$\operatorname{det}(\mathcal{L})=\operatorname{det}\left(\mathcal{L}^{*}\right)=1$

1. $\operatorname{Pr}_{y \sim D_{\mathcal{L}^{*}, c}}[y=0]=\frac{1}{\rho_{c}\left(\mathcal{L}^{*}\right)}$

$$
\leq \frac{1}{\left|\mathcal{L}^{*} \cap \sqrt{n} B_{2}^{n}\right| e^{-n / c^{2}}}
$$

(By Minkowski)

$$
\leq \frac{1}{2^{n} e^{-n / c^{2}}}=o(1)
$$

$\rho_{c}(A):=\sum_{x \in A} e^{-\|x / c\|^{2}}$

$\operatorname{det}(\mathcal{L})=\operatorname{det}\left(\mathcal{L}^{*}\right)=1$

$\mathcal{L}_{1} \subseteq \mathcal{L}$ densest sublattice, $\operatorname{nd}\left(\mathcal{L}_{1}\right) \ll 1 / \log n$ $W:=\mathcal{L}_{1}^{\perp}$
2. $\operatorname{Pr}_{y \sim D_{\mathcal{L}^{*}, c}}[y \in W]=\frac{\rho_{c}\left(\mathcal{L}^{*} \cap W\right)}{\rho_{c}\left(\mathcal{L}^{*}\right)}$
(ortho. is worst-case) $\geq \frac{\rho_{c}\left(\mathcal{L}^{*} \mathrm{n} W\right)}{\rho_{c}\left(\mathcal{L}^{*} \mathrm{~K} W\right) \rho_{c}\left(\mathcal{L}^{*} / W\right)}$

$$
=\frac{1}{\rho_{c}\left(\mathcal{L}^{*} / W\right)}
$$

$$
\rho_{c}(A):=\sum_{x \in A} e^{-\|x / c\|^{2}}
$$

$\operatorname{det}(\mathcal{L})=\operatorname{det}\left(\mathcal{L}^{*}\right)=1$

$\mathcal{L}_{1} \subseteq \mathcal{L}$ densest sublattice, $\operatorname{nd}\left(\mathcal{L}_{1}\right) \ll 1 / \log n$
$W:=\mathcal{L}_{1}^{\perp}$
2. Need to show $\rho_{c}\left(\mathcal{L}^{*} / W\right) \leq 1+o(1)$

Key: $\operatorname{nd}^{*}\left(\mathcal{L}^{*} / W\right)=1 / \mathrm{nd}\left(\mathcal{L}_{1}\right) \gg \log n$
Reverse-Minkowski \Rightarrow

$$
\begin{aligned}
& \left|\left(\mathcal{L}^{*} / W\right) \cap r B_{2}^{n}\right| \ll e^{o\left(r^{2}\right)}, \forall r \geq 0 \\
& \quad \rho_{c}(A):=\sum_{x \in A} e^{-\|x / c\|^{2}}
\end{aligned}
$$

Canonical Polytope of \mathcal{L}^{*} ?

$$
\operatorname{det}(\mathcal{L})=1
$$

$(0,0)$
Log det

Slope: $\ln \operatorname{nd}\left(\mathcal{L}_{1}\right)$

dim.
$0 \quad 1 \quad 2$
$n-1 \quad n$
Assumption: $\operatorname{det}(\mathcal{L})=1$

Canonical Polytope of \mathcal{L}^{*} ?

$$
\operatorname{det}\left(\mathcal{L}^{*}\right)=1
$$

$\operatorname{Map} M \rightarrow \mathcal{L}^{*} \cap M^{\perp}$

Canonical Polytope of \mathcal{L}^{*} ?

$\operatorname{det}\left(\mathcal{L}^{*}\right)=1$
$(0,0) \quad$ Slope: $-\ln \operatorname{nd}\left(\mathcal{L}_{1}\right)$
Log deft

$$
\mathcal{L}^{*} \cap \mathcal{L}_{2}^{\perp}=\mathcal{L}^{*} / W
$$

$(n, 0)$
dim.
0
12
$n-1 \quad n$
$\mathcal{P}\left(\mathcal{L}^{*}\right)$ is "reflection" of $\mathcal{P}(\mathcal{L})$

Conclusions

1. Algorithmic version of ℓ_{2} Kannan-Lovász conjecture via discrete Gaussian sampling.
2. Lower bound certificates for covering radius that are tight within $O(1)$ under slicing conjecture.

Open Problem

1. Prove KL conjecture for general convex bodies.
2. Prove Slicing conjecture for Voronoi cells.
